The set of posts about the area of a trapezoid seems to form a nearly coherent enough whole that it seems worthwhile to make a convenient reference point so that people searching for “how do you find the area of a trapezoid in the most convoluted and over-explained way possible?” have convenient access to it all. So, this is the path of that whole discussion.

# Tag: parallelogram

## Drawing A Trapezoid’s Picture

* (It strikes me, this might just as well be Trapezoid Week here. ) *

Since I did work out the area of a trapezoid starting from the area formula for triangles, and since I was embarrassed to have not seen it sooner, I decide to share it here, where it may do someone some good, particularly if it’s me for next time I teach a class like this. The punch line is known far ahead of time. The trapezoid is a four-sided figure with two sides parallel. The parallel sides have lengths *b _{1}* and

*b*; they’re considered bases. The two bases are an altitude

_{2}*a*apart. The area of the trapezoid then is

*a * (b*.

_{1}+ b_{2})/2## How Do You Make A Trapezoid Right?

I haven’t got done listing kinds of trapezoids, of course. Arguably I’d never be able to finish, since, after all, couldn’t any possible length of the two bases — the parallel lines — and of different lengths of the diagonal legs be imagined? Well, perhaps, although a lot of those kinds are going to look the same. An isoceles trapezoid where the long base is 10 and the short base 8 looks a lot like one where the long base is 11 and the short base 7.5, at least if the bases are the same distance apart. But there are more cases imaginable.